Jump to content

Search the Community

Showing results for tags 'tut'.

  • Search By Tags

    Oddělujte čárkami
  • Search By Author

Content Type


Fórum

  • Obecné
    • Všeobecné
    • Všechno možné
  • Programování
    • Poradna
    • Návody
    • Tvorba
    • Hledám programátora
  • Herní oblast
    • Poradna
    • Jak na to?
    • Herní kontext
    • Herní zážitky
    • Komunita
  • Grafika
    • Poradna
    • Návody
    • Tvorba
  • Ostatní
    • Hardware a software
    • Hledám/nabízím
    • Archiv
    • 3D Tisk

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Web


Facebook


Jabber


Skype


Steam


Twitter


Github


Pastebin

Found 18 results

  1. Bitové operátory Obsah Úvod Bitové operácie Operácia not Operácie and, or Operácie shl, shr Operácia xor 1. Úvod K napísaniu tohoto návodu ma inšpiroval tento príspevok z roku 2012, ktorý podľa môjho názoru má k dnešnej úrovni našich návodov celkom nízku kvalitu a tiež v ňom chýbajú určité informácie. Niektoré body z neho som podobne použil aj ja. V príspevku budú tiež cvičenia, ktoré kým spravíte, rozhodne budete bitovým operáciám rozumieť. Nejaký čas nad cvičeniami určite strávite. V praxi majú tieto operácie veľký význam, predsalen, ak jeden bit môže mať hodnotu 0, alebo 1, tak so znalosťami bitových operátorov je možné do jedného 32-bitového čísla (klasická premenná v Pawn) uložiť 32 true/false hodnôt. Do úvodu však ešte uvediem, že síce dokážu neuveriteľne šetriť pamäť (v prípadne jednej bool hodnoty až 32násobná úspornosť), tak každá operácia trvá určitý čas a z úmyslu ušetriť pamäť by výsledok mohol byť až strata rýchlosti. Ak potrebujete pracovať s binárnymi číslami, Windows kalkulačka je najvhodnejší nástroj (Štart->calc.exe->Možnosti->Programátorská). Otázky sa môžete pýtať v komentároch. Veľa šťastia a nových vedomostí. 2. Bitové operácie Najmenšia dátová jednotka na počítači je bit, ktorý patrí do množiny {0, 1}. Vždy nadobúda práve jednu hodnotu. Operácie prebiehajú v dvojkovej sústave. Desiatková sústava pozostáva z {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Jeden bajt má osem bitov. Keďže v Pawn sa používajú len 4-bajtové premenné, všetky bunky majú 32 bitov. Množina {0, 1} sa dá zobraziť do množiny {false, true}. Premenná, ktorá môže nadobúdať iba hodnoty true a false máva typ "bool", po matematikovi Georgeovi Booleovi. Pawn umožňuje vypisovať čísla v binárnom tvare na konzolu. Stačí do printf() dať namiesto "%d" (decimal - desiatková sústava) "%b" (binary - binárna sústava). Kód si spustite. #include <a_samp> main() { for (new i; i < 16; i++) { printf("%2d = 0b%04b", i, i); } } Cvičenie 1. V Pawn existujú kľúčové slová true a false. Keďže je to beztypový jazyk, je možné zamieňať typy premenných (vyskočí iba warning). Zistite k akým celočíselným hodnotám sa dajú priradiť výrazy true a false pomocou nasledujúceho kódu: #include <a_samp> main() { new a = ??; if (a) { ?? } } 3. Operácia not Všetky bity naraz je možné znegovať operáciou not, ktorá má len 1 argument a značí sa '~'. #include <a_samp> main() { new a = 0b11001100; printf("%032b", a); printf("%032b", ~a); } 4. Operácie and, or Operácie and a or majú dva parametre a ich výsledkom je jedna premenná s rovnakým počtom bitov. Operácie and a or sa v Pawn vykonávajú na všetkých bitoch premennej zaradom, akoby v cykle. Najprv sa vykoná operácia na prvých bitoch premnenných, potom na druhých bitoch premenných, atď. Pawn obsahuje operátor '&' pre operáciu and, ktorá je tiež nazývaná "bitový súčin". Súčin preto, lebo výsledok tejto operácie je "1" iba v prípade, že obidva parametre sú "1". Operáciu or (tiež nazývanú logický súčet) zapisujeme v Pawne operátorom '|'. To, ako Pawn chápe '&' a '|', nám môže sám ukázať. Vašou úlohou je tieto operácie pochopiť priamo od neho. Výstup programu kvôli prehľadnosti pripomína mechanické sčitovanie "pod sebou na papieri". #include <a_samp> main() { new a = 0b1010, b = 0b1100; printf("0b%b\n0b%b &\n------\n0b%b\n\n", a, b, a & b); printf("0b%b\n0b%b |\n------\n0b%b\n\n", a, b, a | b); } Cvičenie 2. Pri prenose dát sa z kontrolných dôvodov pridáva k preneseným dátam jeden bit navyše, jedná sa o tzv. paritný bit. Prenáša sa 8 dátových bitov a jeden paritný - ten úplne naľavo je paritný. (tj. "100000101"). Vašou úlohou je naprogramovať detekciu hodnoty paritného bitu. Doplňte do nasledujúceho kódu operáciu binárneho súčinu, aby kód správne fungoval. Rada: Chcete detekovať, či bol daný bit nastavený na "1". #include <a_samp> main() { new number = 0b100101101; if (parityBitSet(number)) { print("Paritny bit je nastaveny na 1."); } } parityBitSet(number) { if (??) { return true; } else { return false; } } Cvičenie 3. V zastaralej databáze údajov, ktorá musela šetriť maximálny možný priestor, sú údaje o obyvateľoch uložené v bitoch. Napr. nultý bit (úplne vpravo) obsahuje pohlavie (0-muž/1-žena), ten vedľa neho obsahuje informáciu, či osoba poberá dávky v hmotnej núdzi, nasledujúci hovorí o zamestnanosti danej osoby, atď. Databáza používa celkovo 16 bitov, ostatné sú nedefinované. V novej verzii databázy sa zmenil význam piateho bitu a preto chceme bez zmeny ostatných informácií vynulovať daný bit každej osobe. Doplňte procedúru update() tak, aby databáza spĺňala nové požiadavky. #include <a_samp> new people[] = { 0b1100111100110101, 0b0011001101010101, 0b1111111001110111 }; main() { update(); for (new i; i < sizeof(people); i++) { printf("%016b", people[i]); } } update() { for (new i; i < sizeof(people); i++) { ?? } } 5. Operácie shl a shr Nasledujúce dve operácie vykonávajú aritmetické bitové posuny. Aritmetické znamená, že pri posune sa zachová (záporné), alebo vznikne (záporné) znamienko. SHL a SHR sú skratky pre shift left a shift right. Operátormi pre tieto operácie sú "<<" a ">>". Argumentom bitového posunu je počet bitov, o ktoré chceme číslo posunúť. Pri operátore "<<" je novo-pridaný bit 0. #include <a_samp> main() { new a = 1; for (new i; i < 8; i++) { printf("%08b", a << i); } printf(""); a <<= 3; // je mozne pouzit aj tuto syntax printf("%08b", a); } Na binárnej úrovni sa rozlišujú záporné a kladné čísla najvyšším bitom, tj. celková kapacita 4 bajtov je rozdelená na 2 polovice - kladnú a zápornú. U záporných čísel je 31. bit (ten úplne naľavo) vždy 1, pričom u kladných 0. Aritmetický posun vpravo sa teda správa ináč než ten vľavo. Znamienko čísla sa zachováva pri operácii ">>". Operácia ">>" akoby preskočí bit, ktorý určuje zápornosť čísla a posúva všetky ostatné bity. Lepšiu predstavu o tomto procese získate spustením nasledujúceho kódu. Existuje ešte tretí, logický operátor pre posun vpravo, ktorý (záporné) znamienko nezachováva ani nevytvára. Tento operátor je ">>>". #include <a_samp> main() { new a = -10; printf("%032b = %d", a, a); printf("%032b = %d", a >> 1, a >> 1); printf("%032b = %d", a >> 2, a >> 2); printf("%032b = %d", a >>> 1, a >>> 1); printf("%032b = %d", a >>> 2, a >>> 2); } Cvičenie 4. Majme v desiatkovej sústave číslo "65421". Toto číslo z hlavy vydeľte číslom "100", resp. "10^2". Zvyšok zanedbajte. Výsledok si overte. Cvičenie 5. Majme v binárnej sústave číslo "1101010". Z hlavy vydeľte toto číslo číslom "4", resp. "2^2". Zvyšok zanedbajte. Výsledok si overte. Rovnakým spôsobom výsledok vynásobte číslom "4". Dostali ste pôvodné číslo? Cvičenie 6. Doplňte riešenie cvičenia 2 tak, aby nie len kontrolovalo paritný bit, ale aby kontrolovalo, či je paritný bit správny. Skontrolujte hodnotu všetkých bitov a rozhodnite, či ich počet (či sú párne) sedí s informáciou z paritného bitu. Takáto kontrola sa v praxi používa pri prenose dát. Cvičenie 7. Doplnením do kódu nižšie vygenerujte číslo s takýmto tvarom: "0b1010101010101010". Rada: použite okrem operácie na bitový posun aj bitový súčet (na nastavenie bitu) a bitový súčin (na overenie/zistenie hodnoty nejakého bitu). #include <a_samp> main() { new number = 0; for (new i; i < 15; i++) { if (!(??)) { ?? } ?? } printf("0b%016b", number); } 6. Operácia xor Ako aj v názve, tak aj vo funkcionalite sa podobá operácii or. #include <a_samp> main() { new a = 0b1010, b = 0b1100; printf("0b%b\n0b%b ^\n------\n0b%04b\n\n", a, b, a ^ b); } Cvičenie 8. Istý fanúšik jazyka assembler, Rendall Hide, má rád prácu s bitmi. Posledne o sebe tvrdí, že našiel vlastnosť, ktorá dokáže nastaviť zázračným spôsobom hodnotu akejkoľvek premennej na 0. Mnohí ho majú za blázna a nepočúvajú čo hovorí, ale je naozaj blázon, alebo len neodborná programátorská verejnosť nerozumie kráse jeho mágie? Tvrdí, že dokáže vynulovať premennú bez použitia iných konštánt ako "0" a bez operácií ako násobenie, odčítanie či and. Údajne je táto vlastnosť zapísaná tu: n xor n = 0 Preskúmajte túto údajnú vlastnosť a overte, či Rendall Hide bol naozaj blázon, alebo majster majstrov. Cvičenie 9. Nádejný programátor Peter "VlastneŠifrovanieJeNajlepšie" Skutočný si všimol neuveriteľnú a jedinečnú vlastnosť operácie xor. Nazdáva sa, že by možno odhalil niečo, čo by nazýval "symetrické šifrovanie", hoc názvom si ešte nie je istý. Prezrite a vylúštite na bitovej úrovni pozadie tejto operácie. #include <a_samp> const secret = 123456; main() { new number = 9087324; number = encode(number); printf("My new hashed password is: %d", number); number = decode(number); printf("The real password is: %d", number); } encode(number) { return number ^ secret; } decode(number) { return number ^ secret; } Cvičenie 10. Alen During, známy hejter, si s obľubou prezerá internet a hľadá veci na kritiku. Po zlej noci počas ranného rituálu s telefónom našiel príspevok Petra Skutočného a jeho procedúry encode() a decode(). Nemal však chuť sa niečím takým zaoberať a tak mu zo svojho smartphone-u poslal jediný snippet bez slov. Čo ním asi chcel povedať? #include <a_samp> main() { new crackedSecret = gimmeSecret(9087324, 9128732); printf("%d", crackedSecret); } gimmeSecret(pass, hashedPass) { return pass ^ hashedPass; }
  2. Obtížnost: Osnova: 1. Úvod, co je to proměnná 2. Deklarace (vytvoření) proměnné 3. Přiřazování hodnot 4. Datové typy (tagy) 5. Lokální a globální proměnná 6. Závěr 1. Úvod Zdravím Vás, tohle je první ze série návodů věnujících se základům jazyka Pawn. Cílem těchto návodů je seznámit Vás se strukturami tohoto jazyka, s jeho syntaxí a s jeho využitím v praxi. Tento návod se bude věnovat proměnné. Co je to proměnná? Pod pojmem proměnná si můžeme představit nějaké místo v paměti, které má svůj název a do kterého si pro naše potřeby ukládáme hodnoty. Všichni proměnné už známe, a to z matematiky – zde proměnné jako x a y používáme nepřetržitě. A funguje to i podobně – v matematice za ně můžeme dosazovat různé hodnoty, v programování do nich také ukládáme různé hodnoty. 2. Deklarace (vytvoření) proměnné Prvním naším krokem bude deklarace proměnné. Když mluvíme o deklaraci proměnné, máme na mysli, víceméně, její vytvoření. To provedeme následovně: . new id; . Pomocí slova new deklarujeme nové proměnné. Jinak to nejde, jazyk to od nás vyžaduje. id je název (identifikátor) naší nové proměnné. V názvu můžeme používat standardní písmena (A až Z, a až z), číslice (0 až 9) a podtržítko (_). Název bychom měli volit tak, aby odpovídal tomu, k čemu budeme proměnnou potřebovat (např. penize – pro ukládání peněz apod.) Středníkem (;) deklaraci ukončíme. Jazyku tak sdělíme fakt, že jsme s tímto příkazem (s deklarací proměnné) skončili. Takhle to funguje i u jiných příkazů, ne jenom u deklarací. Pokud potřebujeme deklarovat více proměnných najednou, je to možné provést tak, že jednotlivé názvy oddělíme čárkou, takhle: . new id, penize, score; . Takto jsme vytvořili 3 proměnné naráz. 3. Přiřazování hodnot Teď už víme, jak proměnnou vytvořit. Jak do ní ale uložím hodnotu? To udělám pomocí operátoru rovnítko / rovná se (=). . id = 5; . Na levé straně (tzv. lvalue) máme proměnnou, do které chceme ukládat, poté následuje rovnítko, které nám určí, že do proměnné ukládáme hodnotu, a nakonec přichází samotná hodnota (tzv. rvalue). Hodnotou může být číslo, ale také jiná proměnná nebo výraz. Stejně jako deklaraci, tak i tento příkaz zakončíme středníkem. Ono středníkem budeme ukončovat téměř všechno, ale to brzy samo vyjde najevo. Pokud bychom chtěli přiřadit hodnotu už při deklaraci, tak i to nám Pawn dovoluje: . new id = 7; new id = 1, penize = 5000, score = -100; //znak mínus (-) před hodnotou nám značí zápornou hodnotu . Pro zajímavost (rozklikněte spoiler): 4. Datové typy (tagy) Už umíme proměnnou vytvořit a přiřadit jí hodnotu. Teď si musíme říct něco o datových typech. Datový typ nám určuje, jaké hodnoty můžeme do proměnné uložit. Může se jednat o běžná celá čísla (ty jsme používali do teď), ale pak také můžeme ukládat čísla s desetinnou čárkou, různé texty, znaky apod. Čím se nám to bude lišit, když budeme chtít do proměnné uložit např. číslo s desetinnou čárkou? Bude se to lišit způsobem deklarace. Vyjmenujme si všechny běžné datové typy a způsob, kterým je budeme deklarovat. a) Celá čísla (7, 666, -5, -114 apod.) new cela_cisla; //deklarujeme tak, jak jsme se před chvílí naučili cela_cisla = 7; . b ) Reálná čísla – čísla s desetinnou čárkou (3.14159, 10.254, -177.8, -23.23 apod.) new Float:realna_cisla; //před název proměnné jsme přidali tzv. tag, a to tag "Float:" realna_cisla = 3.14159; //tečka (.) nám v programování představuje desetinnou čárku . c) Logické hodnoty (true a false) Logické hodnoty máme jen dvě, a to pravda (true) a nepravda (false). . new bool:logicke_hodnoty; //doplníme tag "bool:" logicke_hodnoty = true; . d) Znaky Znakem může být cokoliv, co najdete na klávesnici – písmeno, číslice, vykřičník, pomlčka atd. Deklarace se neliší od celých čísel, ale ukládání ano! . new znak; //stejné jako u celých čísel znak = 'a'; //ukládaný znak musíme vložit mezi apostrofy (') . e) Řetězec/string ("abcd1234?!", "jak se máš?", "jsem programátor" apod.) Řetězec není nic jiného než posloupnost několika znaků. Jsou to slova, věty, hesla, vše, co nás napadne. Liší se deklarací i ukládáním! . new retezec[10+1]; //v hranatých závorkách [] udáváme délku řetězce, to je ta 10, a navíc přičteme ještě jedničku kvůli potřebám jazyka Pawn retezec = "abcd1234?!"; //ukládaný řetězec znaků musíme vložit mezi uvozovky (") . Pro zajímavost (rozklikněte spoiler): Těch tagů je omnoho více, ale když teď známe jejich princip, nebude těžké se vypořádat ani s těmi ostatními. 5. Lokální a globální proměnná Proměnná se dělí na dva typy podle toho, kde ji deklarujete. Globální proměnná se nejčastěji deklaruje nahoře ve scriptu, těsně pod #include a #define. S touto proměnnou můžete pracovat všude ve scriptu. Oproti tomu lokální proměnná se deklaruje v určitém bloku (bloky nám určují složené závorky { }) a má platnost pouze v něm a v podřazených blocích. Názorná ukázka: . public OnPlayerConnect(playerid) { if(playerid == 0) { new id; id = 5; //bude fungovat, tohle je stejný blok, kde je deklarace if(IsPlayerInAnyVehicle(playerid)) { id = 0; //bude fungovat, tohle je podřazený blok } } id = 7; //nebude fungovat, zahlásí nám to chybu, protože tohle už je nadřazený blok } . 6. Závěr A takhle jsme došli ke konci návodu o proměnné. Dnes jsme se dozvěděli, co je to proměnná, k čemu slouží, jak do ní ukládat hodnoty a výrazy, jaké hodnoty do ní lze ukládat a jak ji rozdělujeme dle platnosti. Navíc jsme si také ukázali, jak psát do kódu komentáře, to jsou ty poznámky, které jsme uvedli za znaky // (dvě lomítka). Za ně si lze psát své vlastní poznatky, připomínky atd. Ještě jednou říkám, že tento návod slouží pro úplné začátečníky, pokročilejší věci byly buďto úplně vynechány, nebo jsou uvedeny ve spoilerech. Přesto, zdá-li se Vám, že jsem něco opomněl, někde jsem se spletl nebo se jen chcete vyjádřit, pište do tohoto tématu. Ověřený návod Tento návod prošel validací, a lze ho proto považovat za ověřený.
  3. Obtížnost: Osnova: 1. Úvod, co je to switch 2. Kdy a jak použít switch 3. Další možnosti case 4. Ukázky použití 5. Závěr 1. Úvod Zdravím Vás u sedmého návodu pro začínající pawnery. Tímto navážeme na minulý návod (přečtěte si ho) a rozebereme si, k čemu slouží switch a kdy jej použít namísto normálních podmínek. Napřed ale co je to ten switch. Switch (česky přepínač) je struktura, která v konkrétním případě nahrazuje soustavu if – else if – else. Jeho účelem je vykonat ten blok, který odpovídá jeho hodnotě. Proto také přepínač, obecně se dá říct, že přepne na blok dané hodnoty. 2. Kdy a jak použít switch Už jsem řekl, že se používá v konkrétním případě. Tím případem je tato soustava podmínek: . new cislo = 2; if(cislo == 1) { //hodnota je 1 } else if(cislo == 2) { //hodnota je 2 } else if(cislo == 3) { //hodnota je 3 } else { //hodnota je jiná } . Pokud v podmínkách porovnáváme takto hodnoty, lze k tomu použít kratší a přehlednější switch. Syntaxe switche je následovná: . switch(cislo) { case 1: { //hodnota je 1 } case 2: { //hodnota je 2 } case 3: { //hodnota je 3 } default: { //hodnota je jiná } } . Do závorek switche jsme dosadili proměnnou, ze které zjišťuje hodnotu. case je klíčové slovo, které nám zde tvoří větev pro konkrétní hodnotu. Jak je vidět, nahrazuje nám else if a podmínku. Na jedno si musíme dát pozor – je potřeba za case a hodnotu uvést dvojtečku. default je bez hodnoty a plní funkci else – provede se vždy, když hodnota neodpovídá žádnému case. Narozdíl od case ale není nutné jej použít. 3. Další možnosti case Switch dokáže pracovat jak s celými čísly, tak se znaky a desetinnými čísly. . case 1: //zápis pro celé číslo case 'a': //zápis pro znak case 3.14: //zápis pro desetinné číslo . Jazyk nám též umožňuje zapsat v jednom case několik hodnot, když je to třeba, stačí je oddělit čárkou. . case 1, 3, 5: //několika celých čísel case 'a', 'b', 'c': //několik znaků case 3.14, 1.4, 8.2: //několik desetinných čísel (tečka je desetinná čárka) . Pro zajímavost (rozklikněte spoiler): . 4. Ukázky použití Před koncem si ještě ukážeme pár příkladů, jak switch používat. Dialogy . Kombinovaný zápis . 5. Závěr Switchem jsme definitivně ukončili téma podmínek. Kromě if, else if a else teď znáte už i switch a víte, kdy a jak ho použít. Poslední varování na závěr: v jiných jazycích (C/C++, C#, Java, Javascript, PHP atd.) se blok case a default ukončuje klíčovým slovem break a neuvádějí se složené závorky. Pro Pawn to prostě neplatí, takže tuto syntaxi si nechte pro ostatní jazyky. Tento návod, stejně jako ty předchozí, je určen pro nováčky, pokročilejší věci byly buďto úplně vynechány, nebo jsou uvedeny ve spoilerech. Přesto, zdá-li se Vám, že jsem něco opomněl, někde jsem se spletl nebo se jen chcete vyjádřit, pište do tohoto tématu. Ověřený návod Tento návod prošel validací, a lze ho proto považovat za ověřený.
  4. Obtížnost: Osnova: 1. Úvod; 2. Charakteristika a vlastnosti jazyka; 3. Odlišnosti oproti jiným jazykům; 4. Užitečné odkazy; 5. Závěr. 1. Úvod Zdravím, po delší pauze jsem se rozhodl, že rozjedu nový seriál, tentokrát zaměřený na jazyk Python. Tento jazyk mě hodně baví a rád bych vás do něj trochu zasvětil. Třeba vás zaujme stejně jako mě. Předem bych chtěl varovat, že se nebude jednat o návody psané pro začátečníky s programováním, očekávám již nějakou programátorskou zkušenost. Nebudu dělat podrobné výklady té či oné části jazyka, budu uvádět jen důležité a věcné informace. Postupně projdu různá témata – základní konstrukce jazyka, práci s regulárními výrazy, objektově orientované programování, podpora funkcionálního programování v Pythonu a různé zajímavé možnosti jazyka. Většina návodů bude psána pro verzi 3 a vyšší. V případě, že se daná vlastnost/funkce jazyka vyskytuje od určité verze, budu se snažit tuto informaci uvést. K úvodním informacím by to bylo vše, v tomto návodu se podíváme na charakteristiku jazyka a poté si uvedeme rozdíly oproti jiným jazykům. 2. Charakteristika a vlastnosti jazyka Nerad bych nudil táhlou historií vývoje, takže zmíním jen dva zajímavé fakty – Python se vyvíjí již od konce 80. let minulého století a jeho autorem je nizozemský programátor Guido van Rossum. Tímto máme historii pokrytou. Nebolelo to, že? Každý programovací jazyk má svou charakteristiku. Je-li řeč o Pythonu, jako první zmíním, že se jedná o víceúčelový vysokoúrovňový skriptovací jazyk. Co je vysokoúrovňový jazyk vysvětlovat nebudu (hodně zjednodušeně – není to C ani assembler), stejně tak to bude s pojmem skriptovací (to si můžete vygooglit ). Co bych ale rád rozebral je všestrannost Pythonu. Python totiž nemá jedno konkrétní zaměření. Lze si v něm vytvořit okenní aplikaci (PyQT, tkinter), stejně tak i testovací skripty ke studentským projektům (vysokoškoláci pochopí). Uplatnění má i při vývoji webových stránek a her. Pokročilí programátoři jej využívají i pro strojové učení. Python můžete zkrátka využít (či zneužít) ke všem možným, nemožným, legálním i nelegálním programátorským nápadům. Nyní se zaměřme na jeho konkrétní vlastnosti, které bychom měli znát. Dobré je vědět, že je multiplatformní. Pro ty, kdo se s tím slovem nikdy nesetkali – Python skripty vám budou fungovat i jinde než na Windows (na Linuxu, Mac OS X i dalších). Abychom tyto ale skripty mohli vůbec spustit, budeme potřebovat interpret (ke stažení zde). V tuto chvíli bych měl asi říct, že je to tedy interpretovaný jazyk; to je taky z části pravda. Bez interpretu se neobejdeme, nicméně Python při spuštění skriptu generuje soubory, tzv. bytecode, jež jsou poté interpretovány. Proto bude lepší říct, že Python využívá to nejlepší z obou světů, tedy kompilace i interpretace. Z programovacího hlediska by nás mohlo zajímat, že Python nevyžaduje deklaraci proměnných a využívá tzv. dynamického typování, což znamená, že nejenže nemusíme deklarovat, ale také nebudeme pevně určovat datový typ. Zkrátka si do proměnných uložíme, co se nám zrovna bude hodit. S datovými typy také souvisí silná typová kontrola. Tím vám chci naznačit, abyste hned zapomněli na veškerou černou magii z Javascriptu ("1" + 2 - "3" + "4" == "94") a podobných jazyků. V Pythonu nelze sčítat či odčítat řetězce s čísly a podobně. Často vyzdvihovanou vlastností Pythonu je také to, že podporuje více paradigmat. Pokud jste se teď zhrozili při slově paradigma, nebojte se, nejde o nic strašného. Programovací paradigma si představte jako způsob řešení a zápisu dané úlohy. Existuje hodně paradigmat – procedurální (Pawn), objektově orientované (Java), logické (Prolog), funkcionální (Haskell)... Některé spolu souvisejí, některé jsou nadřazené jiným, další jsou přesným opakem jiných. Nebudu vám v tom dělat guláš, pro zájemce je tu třeba tento článek. A co tedy Python z toho všeho umožňuje? Úlohy v Pythonu lze řešit procedurálně, ale máme možnost využít i objektově orientované programování; do jisté míry umožňuje Python i funkcionální programování (o tom třeba později). 3. Odlišnosti oproti jiným jazykům Teď už víme o základních vlastnostech Pythonu. V této druhé části návodu se podíváme na rozdíly oproti jiným známým jazykům. Žádné středníky Na konci příkazů a výrazů se, na rozdíl od jazyků jako C, Java či PHP, nepíše středník: // kód v C int n = 5; printf("Proměnná 'n' má hodnotu %i", n); # kód v Pythonu n = 5 print("Proměnná 'n' má hodnotu", n) Odsazení namísto složených závorek Většina jazyků se syntaxí jazyka C (C/C++, C#, Java, PHP, Pawn atd.) využívá ke tvorbě bloků složené závorky. V Pythonu se bloky tvoří dvojtečkou za příkazem (if, else, for, while...) a odsazením (běžně 4 mezery): // kód v C if(promenna < 1) { printf("Hodnota proměnné je menší než 1."); return 1; } # kód v Pythonu if promenna < 1: print("Hodnota proměnné je menší než 1.") return 1 and, or, not Logické operátory se nejčastěji zapisují jako && (and), || (or) a ! (not). V Pythonu se tyto operátory zapisují and, or a not: // kód v C if(promenna1 && promenna2 || !promenna1 && !promenna2) # kód v Pythonu if promenna1 and promenna2 or not promenna1 and not promenna2: Pozměněné názvy příkazů Tohle nebude žádná raketová věda, jen se tu a tam změnilo písmenko či slovíčko. Příklad 1: Namísto else if se píše elif. Příklad 2: Namísto catch u zachytávání výjimek máme except. Příklad 3: Poznámky se píší za mřížku #, ne za dvě lomítka //. Příklad 4: Zkuste najít. Chybějící struktury a operátory Ačkoliv vás to asi překvapí, v Pythonu neexistují jisté struktury a operátory, které jsou v ostatních jazycích běžné. Jedná se o struktury switch, do-while a operátory ++ a --. Není to ale nic, co by nešlo nahradit jiným kódem: # kód v Pythonu # náhrada switche if promenna == 1: print("Je to jedna") elif promenna == 2: print("Je to dva") else: print("Je to Bůh ví co") promenna += 1 # náhrada ++ Ternární operátor ?: Mnozí z vás používají ternární operátor ?: pro tvorbu "inline podmínek". Ani tento operátor v Pythonu není, místo něj je tu konstrukce if-else: // kód v C promenna = 1 < 2 ? 1 : 0; // podmínka ? pravda : nepravda # kód v Pythonu promenna = 1 if 1 < 2 else 0 # pravda if podmínka else nepravda Funguje úplně stejně (podmínky lze řetězit), jen se změnilo pořadí operandů. 4. Užitečné odkazy Zde máte několik užitečných odkazů, mimo jiné odkaz na stažení interpretu Pythonu, bez kterého jeho skripty nespustíte: • stažení interpretu Pythonu; • oficiální dokumentace Pythonu; • oficiální dokumentace Pythonu (pro starší verzi 2.7); • kurz Pythonu na Codeacademy; • vývojové prostředí PyCharm (od JetBrains). 5. Závěr A tím pro dnešek končím. Tento text byl jen lehkým úvodem do Pythonu, měli jsme možnost oťukat si trochu jeho syntaxi a uvést jeho vlastnosti. V příštím návodu se budeme věnovat konstrukcím v Pythonu. Pokud jste narazili na nějakou chybu, nějaký překlep nebo se chcete na něco zeptat, případně mi napsat jen tak, jen do toho.
  5. Obtížnost: Osnova: 1. Úvod 2. Relační operátory 3. Logické operátory 4. Přiřazovací operátory 5. Bitové operátory 6. Priorita operátorů 7. Závěr 1. Úvod Vítám Vás u pátého návodu pro začínající pawnery. Téma se týká dalších druhů operátorů a navazuje na předchozí návod o operátorech. Abyste tento návod pochopili, přečtěte si nejprve ten předchozí. 2. Relační operátory Úkolem relačních operátorů je porovnávat operandy (vrací pravdu, nebo nepravdu). S nimi se zpravidla setkáme v podmínkách. Jedná se o operátory rovnosti, nerovnosti, větší/menší a větší/menší nebo rovno. . new cislo = 5, cislo2 = 10; cislo == cislo2 //dvě rovnítka porovnají, zda jsou čísla stejná (výsledek je false, 5 a 10 nejsou stejná) cislo != cislo2 //vykřičník a rovnítko zjistí, zda se čísla různí (výsledek je true, 5 a 10 jsou různá) cislo > cislo2 //znak pro "větší" zjistí, zda je číslo vlevo větší než to vpravo (výsledek je false, 5 není větší než 10) cislo < cislo2 //znak pro "menší" zjistí, zda je číslo vlevo menší než to vpravo (výsledek je true, 5 je menší než 10) cislo >= cislo2 //znak pro "větší nebo rovno" zjistí, zda je číslo vlevo větší nebo rovno tomu vpravo (výsledek je false, 5 není větší ani rovno 10) cislo <= cislo2 //znak pro "menší nebo rovno" zjistí, zda je číslo vlevo menší nebo rovno tomu vpravo (výsledek je true, 5 není rovno 10, ale je menší) . Všechno to jsou binární operátory. Doufám, že není třeba si je blíže vysvětlovat, princip je stejný jako v matematice, stačí nám znalosti základní školy. Zajímavost: 3. Logické operátory Pomocí logických operátorů tvoříme složitější podmínky. Stejně jako relační, tak i tyto operátory vrací buď pravdu, nebo nepravdu. Logickými operacemi jsou logický součin, logický součet a logická negace. a) Logický součin Logický součin je binární operace a značí se dvěma ampersandy (&&). Výsledek této operace je pravdivý, právě když jsou oba výrazy pravdivé. . new cislo = 5, cislo2 = 10, cislo3 = 15; cislo < cislo2 && cislo2 > cislo3 //výsledek je false . Prvním výrazem je "cislo ". Ten je pravdivý, 5 je menší než 10. Druhým výrazem je "cislo2 > cislo3". To pravda není, 10 není větší než 15. Jeden z výrazů je nepravdivý, proto je celá podmínka nepravdivá. b ) Logický součet Logický součet je binární operace a značí se dvěma svislicemi (||). Výsledek této operace je pravdivý, když alespoň jeden výraz je pravdivý. . cislo < cislo2 || cislo2 > cislo3 //výsledek je true . Vraťme se k předchozímu příkladu. Už víme, že první výraz je pravdivý a druhý nepravdivý. Poněvadž se teď jedná o logický součet, tak celá podmínka bude pravdivá – stačí jen jeden pravdivý výraz. Při složitějších podmínkách si nemusíme být jisti tím, jak ji jazyk vyhodnotí. Proto nám Pawn umožňuje i v tomto případě použít kulaté závorky k určení priority vyhodnocení. . (cislo < cislo2 && cislo2 > cislo3) || (cislo3 > cislo && cislo3 >= cislo2) . Teď jsme si jistí, že se napřed vykoná logický součin a až poté logický součet. c) Logická negace Logická negace je unární operace a značí se vykřičníkem (!). Účelem této operace je převrátit pravdu v nepravdu a naopak. . new bool:logicka = true; !logicka //hodnota bude false . Počáteční hodnota proměnné logicka je true. Po znegování bude hodnota převrácená – false. 4. Přiřazovací operátory Operátor přiřazení již známe – rovnítko. Probrali jsme jej v předchozích návodech, takže teď si ho jen rychle zopakujeme. Na levé straně je proměnná/pole, do které(ho) přiřazujeme, a na pravé straně hodnota nebo výraz, který přiřazujeme. . new cislo = 5; //přiřazení celého čísla new desetinne = 3.14; //přiřazení desetinného čísla new znak = 'o'; //přiřazení znaku new retezec[] = "ahoj"; //přiřazení řetězce new pole[] = {1, 3, 6}; //přiřazení hodnot poli . Pro zajímavost (rozklikněte spoiler): . 5. Bitové operátory Bitové operátory manipulují s bity. Tato problematika zdaleka přesahuje znalosti potřebné pro nováčky, proto ji zde uvádět nebudu. Nicméně, pokud se přeci jen chcete o manipulaci s bity něco dozvědět, přečtěte si tento návod, kde se tomu Mort podrobně věnuje. 6. Priorita operátorů Už jsme si zmínili, že prioritu operátorů můžeme ovlivnit kulatými závorkami jako v matematice, ale jaká je vlastně výchozí priorita operátorů? Na to se lze podívat do spoileru. Je to jen pro zajímavost, nic, bez čeho bychom se neobešli. . 7. Závěr A tímto končí druhý návod věnující se operátorům. Nyní už víte to potřebné o operátorech. Samozřejmě jich existuje mnoho, neuvedl jsem všechny (čárka, dvojtečka i všechny druhy závorek jsou také operátory), ale to už jsou drobnosti, které v praxi sami pochytíte. Tento návod, stejně jako ten předchozí, je určen pro nováčky, pokročilejší věci byly buďto úplně vynechány, nebo jsou uvedeny ve spoilerech. Přesto, zdá-li se Vám, že jsem něco opomněl, někde jsem se spletl nebo se jen chcete vyjádřit, pište do tohoto tématu. Ověřený návod Tento návod prošel validací, a lze ho proto považovat za ověřený.
  6. Obtížnost: Osnova: 1. Úvod 2. Modifikátor(y) 3. const 4. public 5. static 6. stock 7. Závěr 1. Úvod Zdravím Vás u, tentokrát o něco náročnějšího, návodu z oblasti jazyka Pawn. Krátce jsem přerušil svou sérii návodů pro začátečníky a sepsal tento návod, který se týká modifikátorů funkcí a proměnných. Jde se na věc. 2. Modifikátor(y) Začněme s tím, oč vlastně jde. Modifikátor nám představuje nějaké klíčové slovo, které upravuje (modifikuje) vlastnosti funkce/proměnné. Mohou se uvádět samostatně, ale i v kombinaci s jinými modifikátory. V tomto návodu se zaměříme na 4 modifikátory, a to na const, public, static a stock. 3. const Jako první začneme s modifikátorem const. Jeho účel se dá domyslet, je to totiž zkratka pro constant (konstantní), ale aby to bylo jasné – jeho účelem je tvořit tzv. konstantní proměnné, popř. konstantní parametry funkcí. Ano, tento modifikátor se nedá použít u definice funkce. Jeden by si řekl, že pojem "konstantní proměnná" je blbost (vlastně je to oxymóron, ale literární teorii dáme zase jindy). Jak může být proměnná konstantní? No, světě div se, ale může. Takovéto proměnné (nebo poli/řetězci) lze určit hodnotu jen při deklaraci (aneb inicializace). Vypadá to následovně: . new const max = 10; //určili jsme konstantní proměnné "max" hodnotu 10 new const rankNames[3][20+1] = {"Hráč", "Moderátor", "Administrátor"}; //konstantní pole řetězců s názvy hodností . Po tomto už nebudeme moci nikde hodnotu proměnné/pole změnit, kompilátor by nám nahlásil chybu. new před modifikátorem lze vynechat, ale pouze u proměnných, pole/řetězce to vyžadují. Pak jsem také zmínil cosi jako konstantní parametr funkce. Aniž byste to věděli, už jste se s tím setkali, a to u řetězcových funkcí: . strlen(const string[]) //konstantní parametr "string[]" . Zpravidla to vídáme u řetězců, ale lze to aplikovat i na ostatní parametry. A co nám to způsobí? Způsobí to, že daný parametr bude jen pro čtení. To znamená, že ho nelze uvnitř funkce přepisovat. . MyPrint(const a, const { printf("a = %i\nb = %i", a, ; a++; //tento řádek by hodil chybu, "a" je jen pro čtení b = 0; //tento řádek by taky hodil chybu, i "b" je jen pro čtení } . 4. public Dosti zajímavým modifikátorem je public. Ačkoliv jej lze použít i na proměnnou, smysl to má jen u funkcí. S "veřejnými" funkcemi se nejčastěji setkáváme u SA:MP callbacků a časovačů. Na jakém principu ale tyto funkce pracují a co nám přinášejí? Funkce s modifikátorem public SA:MP server volá přímo, proto jsou v AMX souboru zapsány čitelně (narozdíl od běžných funkcí, které mají v AMX zapsány svou adresu). To s sebou přináší velkou výhodu – lze je volat ve všech scriptech i v módu. Když si tedy ve svém módu vytvořím veřejnou funkci, mohu ji zavolat ve scriptech, což mi normální funkce neumožňuje. K tomuto meziscriptovému volání slouží funkce CallRemoteFunction. Nutno ale dodat, že veřejné funkce mají také svá omezení. Ty jsou následující: – každá veřejná funkce musí mít svůj prototyp (klíčové slovo forward); – veřejné funkce nemohou mít parametry s výchozí hodnotou; – veřejné funkce nemohou vracet řetězce. Její využítí spočívá zejména v již zmíněném sdílení mezi scripty. Také ji musíme využít v případě časovačů (SetTimer, SetTimerEx) a SA:MP callbacků (OnPlayerConnect apod.). Definice veřejné funkce vypadá takto: . forward MyPrint(const a, const ; //prototyp veřejné funkce public MyPrint(const a, const //deklarace veřejné funkce { printf("a = %i\nb = %i", a, ; } . 5. static Třetím na řadě je modifikátor static. U tohoto klíčového slova je zajímavé to, že se jeho účel liší u lokální proměnné a u globální proměnné / funkce. U lokální proměnné nám static může nahradit globální proměnnou. Zachovává si totiž svou hodnotu i po ukončení bloku. Názorná ukázka: . MyFunc() { static a; a++; } for(new i; i<3; i++) //3x volám funkci "MyFunc" { MyFunc(); } . Kdybychom proměnnou "a" deklarovali pomocí new, hodnota by se pokaždé vynulovala, jakmile by funkce došla ke konci. Jenže statická proměnná "a" si svou hodnotu zachová i po dokončení funkce, takže její hodnota bude po třech zavoláních 3. Co se týče statické globální proměnné a statické funkce, jejich funkce je odlišná. Když takovou globální proměnnou / funkci deklarujeme, je platná pouze v daném souboru. Co to znamená? Řekněme, že máme knihovnu mylib.inc, kterou připojujeme ke scriptu myscript.pwn. . //mylib.inc new a = 5; MyFunc() print("Hello, world!"); //myscript.pwn #include <mylib> new a = 3; MyFunc() print("Ahoj, světě!"); . Tento kód nám zahlásí chybu, že symbol "a" a "MyFunc" již existuje. Proč? Protože nemůžeme mít stejné identifikátory v knihovně i ve scriptu. Pokud tedy nepoužijeme statickou globální proměnnou / funkci: . //mylib.inc static a = 5; static MyFunc() print("Hello, world!"); //myscript.pwn #include <mylib> new a = 3; MyFunc() print("Ahoj, světě!"); . Teď je vše v pořádku. Proč? Protože jsme v knihovně použili modifikátor static, čímž jsme jazyku sdělili, že tyto názvy jsou platné jen v té knihovně, ve scriptu už ne. Tohle je opravdu šikovná utilitka, která se při tvorbě knihoven hodí. 6. stock A teď se dostáváme k mému favoritovi – k modifikátoru stock. Nevím, proč se to tak ustálilo (asi nadměrným používáním), ale mnozí si ještě dodnes myslí, že stock je synonymum pro funkci. Není, lidi, NENÍ! Jako každý jiný, tak i modifikátor stock má své specifické využití. A toto využití lze aplikovat jak na funkce, tak na proměnné. V čem to tedy je? Když u proměnné/funkce použijeme stock, říkáme tím kompilátoru, aby nám nevyhazoval varování o tom, že funkci nikde nevoláme. Takže, když vytvořím stock proměnnou/funkci a nikde v kódu ji nepoužiji, nebude kompilátor hlásit varování "symbol is never used". To je vše, to je celé kouzlo tohoto modifikátoru. Pro úplnost ještě deklarace: . stock a = 3; //stock proměnná stock MyFunc() //stock funkce { print("Hello, world!"); } . 7. Závěr A tím se dostáváme ke konci. Doufám, že jsem Vás něčemu novému přiučil, o stock a static toho lidé většinou moc neví, tak teď mají možnost se to dozvědět dopodrobna. Jak už bylo zmíněno na začátku, modifikátory lze kombinovat, např. static v kombinaci s const lze najít v některých knihovnách (nejen) od Y_Lesse. Zdá-li se Vám, že jsem něco opomněl, někde jsem se spletl nebo se jen chcete vyjádřit, pište do tohoto tématu. Ověřený návod Tento návod prošel validací, a lze ho proto považovat za ověřený.
  7. Zdravím, zase po dlouhé době jsem se rozhodl zde publikovat jeden ze svých návodů. Předem říkám, že se nejedná o nic, čemu by se měli věnovat začátečníci, takže pozdější dotazy typu "Co je to if? Co je to funkce? Co je to pawn?" budou pravděpodobně ignorovány. Řeč bude o variabilních parametrech funkce a práce s těmito parametry. Obtížnost: Obsah 1. Úvod - základní principy a pojmy 2. Konstantní vs. variabilní parametry; kombinované parametry 3. Datové typy / tagy variabilních parametrů 4. numargs, getarg, setarg 5. Pořadí parametrů Úvod Než se do toho pustíme, uveďme a vysvětleme si pojmy, se kterými budeme pracovat. Je-li řeč o parametru (nebo také argumentu), je tím myšlen parametr/argument funkce. Variabilním (proměnným) počtem parametrů myslíme takové parametry, jejichž počet při definici funkce není pevně daný. To znamená, že při volání funkce můžeme dosadit vždy různý počet parametrů. Konec řečí, jdeme si ukázat, jak na to. Konstantní vs. variabilní parametry Ve většině případů pracujete s funkcemi, které mají konstantní (neměnný) počet parametrů. Může jít například o následující, notoricky známou funkci: SendClientMessage(playerid,color,const message[]); _ Při jejím volání se očekává, že pokaždé dosadíme 3 parametry (ID hráče, barvu zprávy a text zprávy), takže volání může vypadat například následovně: SendClientMessage(0,-1,"You're noob."). Pak tu jsou ale funkce, které mají variabilní (proměnný) počet parametrů. Příkladem nám může být mnou definovaná funkce pro sčítání libovolného počtu celých čísel: MultiSum(...) { new num = numargs(),sum; for(new i;i<num;i++) sum += getarg(i); return sum; } _ Když budeme volat tuto funkci, můžeme dosadit kolik parametrů jen chceme. MultiSum(3,8), MultiSum(9,3,-1,5,3) i MultiSum(1,1,1,-5,1,4,2,3,5,8) bude fungovat a bude fungovat správně. Jistě vám už došlo, že variabilitu počtu nám zajišťují tři tečky. Oba výše uvedené postupy lze zkombinovat, tedy určit několik pevně daných parametrů a zbytek nechat jako variabilní. Ale pozor, v tomto případě musí být konstatní parametry na začátku a tři tečky vždy na konci! Funkce pro formátování textu nám budiž příkladem: format(output[], len, const format[], {Float,_}:...); _ První tři parametry uvádíme vždy, další se odvíjí od počtu použitých specifikátorů. (více o funkci format) Datové typy / tagy variabilních parametrů Uvedeme-li při definici funkce pouhé tři tečky, funkce bude očekávat jen celočíselné parametry a řetězce. Chceme-li dosazovat i argumenty jiných datových typů / tagů (Float, File, Text apod.), zápis bude vypadat následovně: Float:... //pouze pro desetinná čísla {Float,_}:... //pro celá čísla, řetězce, čísla s desetinnou čárkou a logické hodnoty {Float,bool}:... //pro desetinná čísla a logické hodnoty {Text,Text3D,Menu}:... //pro ID textdrawů, 3D labelů a menu _ A takto bychom mohli pokračovat dál. Princip spočívá v tom, že před tečky uvedeme příslušný tag, pokud je jich více, uzavřeme je do složených závorek { } a oddělujeme čárkou. Znak _ (podtržítko) nám zastupuje celá čísla, logické hodnoty a řetězce. numargs, getarg, setarg Varování: Tento způsob tvoření parametrů (zejména v případě polí a řetězců) je dosti pomalý. Jsou i rychlejší alternativy, pokud umíte pracovat s direktivou emit. Nyní se dostáváme k funkcím, které pracují s parametry, jejichž počet neznáme. Již jsme je použili nahoře u funkce MultiSum. numargs() Tato funkce vrací celkový počet argumentů funkce, tedy i pevně dané argumenty, ne jen ty variabilní, na to pozor. MultiSumWithException(exception,...) { new num = numargs(),sum; for(new i=1;i<num;i++) { if(getarg(i) == exception) continue; sum += getarg(i); } return sum; } MultiSumWithException(4,1,5,3,4); //numargs vrátí číslo 5 (4 variabilní a 1 konstantní parametr) _ getarg(arg,index=0) Funkce vracející hodnotu argumentu podle zvoleného ID (arg). Začíná se od nuly, takže první argument bude mít ID 0, druhý ID 1 atd. Parametr index nám poslouží v případě, že v naší funkci použijeme řetězec nebo pole. Pole/řetězec se totiž jeví jako jeden argument (arg) a abychom se dostali k jeho buňkám / k jednotlivým znakům řetězce, musíme využít indexu (index). I tyto indexy začínají nulou. PrintThirdNumberFromArrays(...) //při volání dosadím pole a řetězec { new num = numargs(); for(new i;i<num;i++) { printf("%i",getarg(i,2)); //výpis hodnoty třetí buňky pole / třetího znaku řetězce } } PrintThirdNumberFromArrays({7,4,5,3},"ahoj"); //numargs vrátí číslo 2 (2 parametry - 1 pole a 1 řetězec), funkce vytiskne 5 a 111 (111 je hodnota znaku 'o' v ASCII tabulce, pro výpis znaku použijte specifikátor %c namísto %i) _ setarg(arg,index=0,value) Setarg nastavuje parametru hodnotu. Funguje podobně jako getarg, za arg dosadíme pořadí argumentu, index využijeme v případě polí a řetězců (jinak doplňte nulu) a za value novou hodnotu daného argumentu. Příklady: setarg(0,.value=1); //nastaví 1. argumentu hodnotu 1 setarg(3,.value=Text3D:5); //nastaví 4. argumentu hodnotu ID 3D labelu 5 (pozor, argumenty musí tento tag podporvat, viz výš) _ Pořadí parametrů Tohle až tak s tématem nesouvisí, ale když už jsme se dostali tak daleko, uvedeme si i toto. V kódu výše jsme použili .value. Tato syntaxe nám slouží k tomu, abychom nemuseli dosazovat za index nulu, ta je totiž výchozí hodnotou tohoto parametru. Zkrátka jsem tím přeskočil defaultně určený argument. Toto přeskakování parametrů můžete vidět například zde. Když se nám zachce (ale podotýkám, že je to zbytečné), můžeme tím měnit i pořadí normálních argumentů: SendClientMessage(0,0xFF0000FF,"Ahoj!"); //parametry doplněné v typickém pořadí playerid, barva, zpráva SendClientMessage(.color=0xFF0000FF,.message="Ahoj!",.playerid=0); //tatáž funkce, akorát jsem změnil pořadí argumentů _ Hodí se ještě uvést, že u variabilních parametrů toto nelze dělat. A proč? No protože nemají u definice funkce svůj název/identifikátor (jsou tam jen ty tři tečky, popř. tagy, to nestačí). No a to máme vše. Doufám, že jste se něčemu přiučili, profesionálové mi to mohou zkontrolovat, grammarové hledat gramatické a pravopisné chyby, hnidopichové podotknout, že tenhle návod je i jinde (áno, překvapivě jsem ho taky psal já ) a ostatní mi vyjádřit svůj názor, budu rád. Ok, I'm out. Ověřený návod Tento návod prošel validací, a lze ho proto považovat za ověřený.
  8. Obtížnost: Osnova: 1. Úvod, co je to pole 2. Deklarace pole 3. Práce s indexy (přiřazování hodnot) 4. Pole a řetězec 5. Vícerozměrné pole 6. Závěr 1. Úvod Zdravím, tohle je druhý ze série návodů pro začínající pawnery. Návod navazuje na ten předchozí o proměnných (klik). Znalost proměnných je nutná k pochopení tohoto návodu, proto Vám doporučuji, abyste si nejprve přečetli ten první návod (odkaz je k dispozici). Co je to pole? Pole (angl. array) je, zjednodušeně řečeno, proměnná, do které můžeme ukládat více hodnot. Funguje to tak, že se nám v paměti vymezí prostor a tento prostor se nám rozdělí na tolik buněk, kolik určíme. Jako kdybychom vzali dort a rozkrojili ho na námi určený počet kousků. K těmto jednotlivým buňkám (kouskům dortu) pak přistupujeme pomocí tzv. indexů. 2. Deklarace pole Jako první začneme s deklarací pole. Ta funguje stejně jako u proměnné, akorát s malým rozdílem. . new hraci[3]; . Opět jsme použili slůvko new, opět jsme zvolili název a opět jsme to všechno zakončili středníkem. Co se tedy změnilo? Hned za název jsme přidali hranaté závorky [ ] a do nich jsme vepsali velikost pole. Je tam 3, což znamená, že pole s názvem hraci má celkem 3 buňky. Samozřejmě můžeme deklarovat více polí naráz a přidat k nim různé tagy (pro různé datové typy), stejně jako u proměnných. . new hraci[3], Float:souradnice[4], bool:admin[10]; . 3. Práce s indexy (přiřazování hodnot) Nyní máme vytvořené pole. Jak teď do jednotlivých buněk uložíme hodnoty? Budeme k nim přistupovat přes, již zmíněné, indexy. Každá buňka má svůj unikátní index. Indexy vždy začínají od nuly. Poslední index bude vždy o jedno menší, než je velikost pole. Takže naše pole hraci bude mít indexy 0 až 2, pole souradnice bude mít indexy 0 až 3 a pole admin bude mít indexy 0 až 9. Teď pojďme poli hraci přiřadit nějaké hodnoty. . hraci[0] = 1; hraci[1] = 0; hraci[2] = -3; . Takhle jsme všem třem buňkám určili hodnotu. Indexy zapisujeme tam, kde jsme při deklaraci zapisovali velikost. Pro procvičení to samé uděláme i s druhým polem. . souradnice[0] = 4.7; //ukládáme čísla s desetinnou čárkou souradnice[1] = 8.52; souradnice[2] = -1.02; souradnice[3] = -0.5; . Pro zajímavost (rozklikněte spoiler): 4. Pole a řetězec Už u proměnných jsme narazili na tento způsob deklarace – jednalo se o řetězce. Je načase si říci, že řetězec není nic jiného než pole znaků. Každá buňka obsahuje jeden znak z řetězce. Podívejme se na následující příklad: . new pozdrav[4+1]; //deklarace pole znaků (řetězce), nezapomeňme přičíst jedničku (znak) navíc pozdrav = "ahoj"; . Teď máme v poli/řetězci pozdrav slovo "ahoj". Když si ho rozpitváme, zjistíme, že každý index v sobě má jedno písmeno. . pozdrav[0] = 'a' pozdrav[1] = 'h' pozdrav[2] = 'o' pozdrav[3] = 'j' . Index 4 jsem záměrně nezmínil. Proč? Podrobněji se tomu budu věnovat v návodu o řetězcích, prozatím si vystačíme s informací, že jedná-li se o řetězec (u ostatních polí to neplatí), musí poslední buňka zůstat nezměněná. Necháme ji prostě tak, jak je. Pro zajímavost (rozklikněte spoiler): 5. Vícerozměrné pole (pro středně pokročilé – rozklikněte spoiler) 6. Závěr A jsme na konci. Nyní už víme, jak funguje pole, jak jej vytvořit a jak s ním pracovat. Taky jsme si řekli něco málo o principu vícerozměrných polí a o tom, jaký vztah má řetězec k poli. Tento návod, stejně jako ten předchozí, je určen pro nováčky, pokročilejší věci byly buďto úplně vynechány, nebo jsou uvedeny ve spoilerech. Přesto, zdá-li se Vám, že jsem něco opomněl, někde jsem se spletl nebo se jen chcete vyjádřit, pište do tohoto tématu. Ověřený návod Tento návod prošel validací, a lze ho proto považovat za ověřený.
  9. #emit ***** Rád bych vás chtěl informovat, že tento topic bude čistě jen o základních informacích. Vyhnu se stránkám textů jak funguje compiler, další formy preprocesorů... jelikož to není tak extrémně podstatné. Zdravím vás u návodu na nejtěžší látce v pawn. CO JE TO EMIT? Existují 2(možná víc) výborných anglických návodů na emit, ale v obou jsou asi 2 strany čisté teorie a informací, ohledně jak funguje compiler, jak vzniklo PAWN, jak funguje amxing, co je to opkód... takže najít tam prostě smysluplnou větu a odpověď na tuhle otázku tam není jednoduché, ale rád vám na ní odpovím já: emit nejsou nic více než jen pointery(jestliže nevíte, co je to pointer, budete se muset naučit teorii C++ především v oblasti pointerů, jelikož bez toho emit nepochopíte). Každá proměnná, kterou deklarujete má relevantní informace a to jméno, údaj a především adresu: new Promenna = 3; Vy vidíte pouze 2 informace a to jméno proměnné(Promenna) a údaj(3). Ale adresu ne. A s ní můžeme pracovat pomocí emitu. EMIT A PAWN Mezitím, co v C++ můžete pracovat s kolika pointery se vám zlíbí, v pawn na to máte pouze 2 pointery a to PRI(primární aka první) a ALT(alterantivní aka druhé). Obou můžete přiřadit hodnoty jak z lokálních tak i globálních proměnných(ano, skutečně emit potřebuje vědět, jestliže vkládáte údaje z globální či lokální), a jenom těmto 2 se mohou dít dané "operace"(sečtení, negace, odečtení aj). Určitě se někteří tedy ptáte k čemu je mi emit, když můžu jednoduše přiřaďovat a měnit hodnoty pomocí rovnítka? Ano, můžete ale pointery zjistí adresu proměnné. Najde její adresu, kde je přesně a přepíše údaj. Rovnítko "hledá", jak se jmenuje proměnná a přepíše údaj. Proto je taky emit rychlejší než operace. Nechápeme? Vysvětlím: V případě, že hledáte text(nebo-li jméno proměnné) tak je to pomalejší, jelikož se musí zjistit přesné jméno do poslední znaku, aby jsme neměli například proměnnou ahoj a Ahoj a nebral to jako 1 a tu samou. Ale, pod adresou si můžeme představit jako "id" té proměnné, a číslo se hledá podstatně jednodušeji, protože jediný způsob jak najít číslo je řádově počítat(0, 1, 2, 3, 4, 5...), a protože emit zná adresu proměnné(což neni nic více než číslo), proto je také rychlejší. UKÁZKA EMITU Emit se značí preprocesorovým znamínkem # a slovem emit: #emit Pro představuj tu je jednoduchá operace a to sečtení 2 proměnných a výsledek vložený do 3 proměnné: new Cislo1 = 11, Cislo2 = 22, Vysledek; #emit LOAD.S.PRI Cislo1 #emit LOAD.S.ALT Cislo2 #emit ADD #emit STOR.S.PRI Vysledek printf("%i", Vysledek); // 33 Teď si to postupně rozebereme: #emit LOAD.S.PRI Cislo1 Do primárního(prvního) pointeru načte a připíše hodnotu proměnné Cislo1 #emit LOAD.S.ALT Cislo2 Do alternativního(druhého) pointeru načte a připíše hodnotu proměnné Cislo2 #emit ADD Vezme hodnoty z primárního a alternativního a sečte je. #emit STOR.S.PRI Vysledek Výsledný údaj ze primární(jelikož add sečte a vepíše do primárního) a připíše jí do proměnné Vysledek. Pro uživatele, co ovládají C++, tak je to stejné(spíše podobné) jako: int Cislo1 = 11; int Cislo2 = 22; int Vysledek; int * p1 = &Cislo1; /* 0000 */ int * p2 = &Cislo2; /* 0004 */ Vysledek = *p1 + *p2; Tady bych to rád zakončil, jelikož jsem vám chtěl ukázat jen základy k emitu. Samozřejmě, emit jak píše Misiur v návodě http://forum.sa-mp.com/showthread.php?p=3430898 v případě tvorby filterscriptu či gamemodu ho vůbec nepotřebujete. Spíše se hodí pro tvorbu includů a knihoven kvůli rychlost. TEST RYCHLOSTI #emit vs konstantní #emit vs obyč. operace #emit: 13 Konstantní emit: 13 Operace: 26
  10. Zdravím, včera a dnes došlo k reorganizaci návodů. Došlo ke smazání některých sekcí a k přidání nových. Stále platí, že návody musí projít revizí, aby mohly být označeny jako ověřené, a stále platí, že musí být zpracovány dle předlohy. a) Návody V hlavní sekci jsou všechny návody, které se týkají SA:MP funkcí a callbacků. Také jsou zde návody, které vysvětlují, jak něco vytvořit. Příklady: dialogy, textdrawy, cmd systémy, file systémy atd. Základy pawn a Rozšířené znalosti pawn Tyto podsekce sdružují návody, které se týkají přímo jazyka Pawn. V Základech jsou návody pro nováčky, v Rozšířených znalostech návody pro pokročilejší. Příklady pro Základy: proměnná, podmínky, cykly, funkce atd. Příklady pro Rozšířené znalosti: bitová manipulace, pokročilá inicializace polí, ternární operátor, pokročilá práce s řetězcem atd. c) Práce s YSI Podsekce pro návody o knihovně YSI. Příklady: y_ini, y_commands, y_groups, y_va atd. d) Nové návody Podsekce, která slouží k přidávání nových návodů. Pokud chcete založit nový návod, udělejte to zde. Jakmile dojde k ověření moderátorem, bude návod přesunut do příslušné (pod)sekce. e) Neověřené návody V této podsekci je většina dosavadních návodů. Žádný z nich neprošel kontrolou, proto je nemůžeme považovat za ověřené. Nezodpovídáme za pravdivost ani úplnost informací z těchto návodů.
  11. Obtížnost: Osnova: 1. Úvod, co je to podmínka 2. Vytvoření podmínky 3. Další možnosti větvení 4. Vnořené podmínky 5. Závěr 1. Úvod Dostáváme se k šestému návodu o základech jazyka Pawn. V něm si vysvětlíme, co to jsou podmínky a jak probíhá větvení. Než budeme pokračovat, měli byste mít znalosti alespoň z předchozích dvou návodů (z tohoto a tohoto). Abychom se posunuli dál, musíme si nejdříve říct, co to podmínka a větvení je. Podmínku si můžeme představit jako výraz (tvořený relačními a logickými operátory – viz návod na operátory), který je buď pravdivý, nebo nepravdivý. Je-li pravdivý, vykoná se kód, který jsme podmínili. Můžeme také určit, co se stane, když je výraz nepravdivý. Tomuto rozdělování kódu dle výsledku podmínek se říká větvení. Bloky ani klíčová slova if, else a switch neukončujeme středníkem! 2. Vytvoření podmínky Teď si zkusme vytvořit takovou podmínku a větev. Syntaxe je následující: . if(logický výraz) { //kód } . Klíčové slovo if nám značí, že se bude jednat o podmínku (z angličtiny if – jestliže). Do kulatých závorek píšeme logický výraz, který se má vyhodnotit. Mezi složené závorky (které nám tvoří větev – blok) píšeme kód, který se má vykonat, když je podmínka pravdivá. Zkusme si to na příkladu: . new cislo = 10; if(cislo == 10) { print("Hodnota proměnné cislo je rovna deseti."); } . Podmínka je pravdivá, kód se vykoná. Co by se stalo, kdyby podmínka pravdivá nebyla? Nestalo by se nic. Kód uvnitř bloku if by se nevykonal. 3. Další možnosti větvení Na začátku jsem psal, že může nastat i situace, kdy chceme, aby se něco stalo v případě, že podmínka neplatí. I to nám jazyk umožňuje provést, a to hned několika způsoby. a) else If nám tvořilo "pravdivou větev", else nám pak bude tvořit "nepravdivou větev", tedy blok, který se vykoná, když bude podmínka nepravdivá. Nutno dodat, že k else se podmínka nedává a že ho nemůžeme použít samostatně (je vázán na if). . new cislo = 5; if(cislo == 10) { print("Hodnota proměnné cislo je rovna deseti."); } else { print("Hodnota proměnné cislo není rovna deseti."); } . Podmínka se vyhodnotí jako nepravdivá, takže blok if se přeskočí a místo toho se vykoná blok else. b ) else if Složitější větvení nám pak umožňuje else if. Zjednodušeně řečeno je to else s dodatečnou podmínkou. Else if bloků může být více, ale stejně jako else nemohou stát samostatně. . new cislo = 5; if(cislo == 10) { print("Hodnota proměnné cislo je rovna deseti."); } else if(cislo == 5) { print("Hodnota proměnné cislo je rovna pěti."); } else if(cislo == 0) //tato podmínka se už vyhodnocovat nebude { print("Hodnota proměnné cislo je rovna nule."); } . A v čem je vlastně kouzlo else if? Script vyhodnotí podmínku v if, zjistí, že je nepravdivá, tak přeskočí k následujícímu else if. Opět vyhodnotí podmínku, zjistí, že je pravdivá, tak vykoná tento blok. K dalšímu else if už ale nepokračuje, protože jedna z podmínek nad ním byla pravdivá. A tím se liší od soustavy if – if – if; u takové soustavy by totiž script vyhodnocoval všechny podmínky nehledě na to, že některá z nich byla pravdivá. c) if – else if – else Samozřejmě to jde také vše zkombinovat, záleží jen na tom, co potřebujeme. . new cislo = 5; if(cislo == 10) { print("Hodnota proměnné cislo je rovna deseti."); } else if(cislo == 5) { print("Hodnota proměnné cislo je rovna pěti."); } else { print("Hodnota proměnné cislo není ani 10, ani 5."); } . d) switch Pro určité případy zde máme ještě jednu strukturu, a tou je switch. O switchi si něco povíme až v příštím návodu. 4. Vnořené podmínky Do teď jsme si ukazovali jednoduché podmínky a jednoduché větvení. Ale abyste si nemysleli, že je možné jen tohle, máme možnost podmínky vnořovat, tedy vkládat podmínku do podmínky. Viz tento příklad: . new cislo = 5; if(cislo > 0) { if(cislo == 5) { print("Hodnota proměnné cislo je rovna pěti."); } else { print("Hodnota proměnné cislo není rovna pěti."); } } . Zde je vidět, že uvnitř bloků lze tvořit další bloky. Platí to u podmínek, platí to u cyklů, platí to u všech struktur, které tvoří bloky. 5. Závěr A to je z podmínek všechno. Dozvěděli jste se, jak podmínky a větvení fungují, jak můžete uplatnit svou znalost relačních a logických operátorů v praxi, jak tvořit větev pro pravdu i nepravdu, jak vytvářet složitější podmínky a jak podmínky vnořovat. V dalším návodu si probereme onen zmíněný switch. Tento návod, stejně jako ten předchozí, je určen pro nováčky, pokročilejší věci byly buďto úplně vynechány, nebo jsou uvedeny ve spoilerech. Přesto, zdá-li se Vám, že jsem něco opomněl, někde jsem se spletl nebo se jen chcete vyjádřit, pište do tohoto tématu. Ověřený návod Tento návod prošel validací, a lze ho proto považovat za ověřený.
  12. Obtížnost: Osnova: 1. Úvod, co je operátor a operand 2. Dělení operátorů 3. Aritmetické operátory 4. Závěr 1. Úvod Vítám Vás u čtvrtého návodu pro začínající pawnery. Tématem tohoto návodu budou základní informace o operátorech, jejich dělení a aritmetické operátory. O dalších druzích operátorů napíši, vzhledem k množství informací, návod zvlášť. Ačkoliv to teď nevíte, operátory jsme využívali už v předchozích návodech, ale také v matematice (třeba +). Úkolem operátorů je vykonávat nějakou operaci (třeba sčítání). Aby tuto operaci mohli vykonávat, musí pracovat s tzv. operandy. Operand je nějaká hodnota, která stojí před, nebo za operátorem (čísla, která sčítáme). . 1 + 3 //plus je operátor, 1 a 3 jsou operandy . Operandy mohou být konstantní (neměnné), to jsou třeba čísla nebo jmenné konstanty jako MAX_PLAYERS, ale také variabilní (proměnné), to jsou proměnné, pole, návratové hodnoty funkcí apod. Kombinací operátorů a operandů vzniká výraz. 2. Dělení operátorů a) Počet operandů Dělit operátory můžeme podle různých kritérií. Prvním je počet operandů. Operátory s jedním operandem nazýváme unární, se dvěma operandy binární a se třemi operandy ternární. . !promenna //vykřičník je unární operátor 1 + 3 //plus je binární operátor výraz ? true : false //otazník s dvojtečkou jsou jediným ternárním operátorem v Pawn . b ) Účel Dále můžeme operátory dělit podle jejich účelu. Pak mluvíme o operátorech artimetických, relačních, logických, přiřazovacích a binárních. Tohoto dělení se budeme držet a ty hlavní skupiny si blíže rozepíšeme. 3. Aritmetické operátory Se základními aritmetickými operacemi jsme se setkali právě v matematice. Jsou to sčítání, odčítání, násobení a dělení. . new cislo = 5, cislo2 = 10; cislo + cislo2 //plus sečte dva výrazy (výsledek je 15) cislo - cislo2 //mínus odečte dva výrazy (výsledek je -5) cislo * cislo2 //hvězdička vynásobí dva výrazy (výsledek je 50) cislo / cislo2 //jedno lomítko vydělí dva výrazy (výsledek je 0.5) . Pak je tu ještě jeden speciální operátor pro dělení, který ovšem vrací zbytek po dělení. Nazývá se modulo. . cislo % cislo2 //procento vydělí dva výrazy a vrátí nám zbytek (zbytek je 5) . Všechny výše uvedené operátory jsou binární. Nezapomeňme, že pro ně platí stejná matematická pravidla jako v reálném životě (nulou nelze dělit, násobení má přednost před sčítáním, sčítání a násobení jsou komutativní operace atd.). Pokud chceme, aby nějaká operace měla přednost před jinou (sčítání před násobením), můžeme, stejně jako v matematice, použít kulaté závorky. . 4 * (1 + 1) //díky závorkám dojde nejprve k sečtení jedniček a až poté k vynásobení čtyřkou . Dalšími aritmetickými operacemi jsou inkrementace a dekrementace. S těmi se setkáme později u cyklů. Oba operátory pro tyto operace jsou unární a uvádí se buď před, nebo za proměnnou. Ano, v tomto případě musí být operandem proměnná / buňka pole. . new cislo = 5; cislo++ //inkrementace, hodnota proměnné cislo se zvětší o 1, tedy na 6 cislo-- //dekrementace, hodnota proměnné cislo se zmenší o 1, tedy na 4 . Jak už je uvedeno v poznámce, inkrementace zvýší hodnotu o 1, dekrementace sníží hodnotu o 1. Pro zajímavost (rozklikněte spoiler): . Poslední aritmetický operátor, který si zmíníme, je unární mínus. Uvádí se před operandem a jeho úkolem je převést kladné číslo v záporné a naopak. Na nulu nebude mít vliv. . -cislo . 4. Závěr První část návodu o operátorech je za námi. Vysvětlili jsme si pojmy jako operátor, operace, operand a výraz. Také jsme si uvedli, jak se operátory rozlišují a co to jsou aritmetické operátory. V příštím návodu si objasníme zbývající kategorie – relační, logické, přiřazovací a bitové operátory. Tento návod, stejně jako ten předchozí, je určen pro nováčky, pokročilejší věci byly buďto úplně vynechány, nebo jsou uvedeny ve spoilerech. Přesto, zdá-li se Vám, že jsem něco opomněl, někde jsem se spletl nebo se jen chcete vyjádřit, pište do tohoto tématu. Ověřený návod Tento návod prošel validací, a lze ho proto považovat za ověřený.
  13. Obtížnost: Osnova: 1. Úvod, co je řetězec 2. Nulový znak 3. Ukládání hodnot do řetězce 4. Závěr 1. Úvod Zdravím Vás, dostali jsme se už ke třetímu návodu pro začínající pawnery. Ještě než se do toho pustíme, doporučuji, abyste si přečetli předchozí dva návody (návod na pole – návod na proměnnou), zejména návod na pole, bez něj budete mít problémy pochopit problematiku řetězců. O řetězci (angl. string) byla řeč již dříve. Zopakujeme si to hlavní – je to pole znaků, do kterého ukládáme texty, zprávy, hesla atd. Každá buňka obsahuje jeden znak. Do poslední buňky nic neukládáme. Proč vlastně do poslední buňky nic neukládáme? Kvůli nulovému znaku. 2. Nulový znak Je načase, abychom si konečně vysvětlili, proč u řetězců potřebujeme buňku navíc, proč tuhle poslední buňku nikdy nezaplňujeme. Je to kvůli tzv. nulovému znaku (také EOS – End of String). Tenhle konkrétní znak (mimochodem vypadá takhle – '\0') v Pawn totiž určuje konec řetězce. Jazyk po nás požaduje, abychom mu sdělili, když řetězec skončí. Proto je nezbytné k délce řetězce vždy přičíst jeden znak navíc, ten je vyhrazen pro tento nulový znak. . new pozdrav[4+1]; //deklarace řetězce, která je nám důvěrně známa z předchozího návodu na pole pozdrav = "ahoj"; //uložení pozdravu do řetězce . Slovo "ahoj" má 4 znaky, celkem tedy potřebujeme řetězec o délce pěti znaků (4 + nulový znak). Abychom měli představu, jak to v tom řetězci vypadá, rozpitváme si ho: . pozdrav[0] = 'a' pozdrav[1] = 'h' pozdrav[2] = 'o' pozdrav[3] = 'j' pozdrav[4] = '\0' //onen nulový znak v páté buňce s indexem 4 . Ať už potřebujeme řetězec k čemukoli, vždy musíme myslet na tento nulový znak. Pro příklad, pokud funkce SendClientMessage může odeslat zprávu o maximální délce 144 znaků, řetězec s touto zprávou musí mít délku 145. 3. Ukládání hodnot do řetězce Existuje více způsobů, jak můžeme do řetězce něco uložit. Vlastně jich je spousta, my si ukážeme ty základní. a) Přímé ukládání pomocí operátoru přiřazení Tím mám na mysli rovnítko (=). Takhle jsme to dělali doposud, uvedeme identifikátor řetězce (bez hranatých závorek), rovnítko a poté text ohraničený uvozovkami ("). . pozdrav = "ahoj"; . Tento způsob ukládání lze použít, když přesně víme, co tam chceme uložit. Také je nutno podotknout, že ukládaný text nesmí být delší, než je délka řetězce. Upřímně si myslím, že s tímto se v praxi moc nepotkáte (akorát při inicializaci). Často je potřeba text upravit, dosadit do něj hodnoty proměnné apod. K těmto účelům nám slouží formátování. b ) Formátování Když formátujeme text, označujeme tím proces, při kterém do něj vkládáme hodnoty jiných proměnných a řetězců. Slouží nám k tomu funkce format. . format(output[], len, const format[], {Float,_}:...) . Za "output[]" dosadíme řetězec, kam chceme výsledný text uložit. Parametr "len" po nás chce délku výsledného textu. "const format[]" je onen text, který chceme formátovat. To poslední – "{Float,_}:..." – jsou proměnné/řetězce, které chceme dosadit. Ukažme si to na příkladu: . new hrac[4+1] = "Pepa"; //takto vypadá inicializace řetězce new penize = 500, score = 1000; //proměnné, které budeme dosazovat new vysledek[100]; //výsledný řetězec, kde bude nás formátovaný text format(vysledek, sizeof vysledek, "Hráč %s má %d dolarů a %d skóre.", hrac, penize, score); . V řetězci vysledek teď budeme mít: Hráč Pepa má 500 dolarů a 1000 skóre. . Ve fomátované zprávě jsme použili jisté znaky – %s a %d. Těmto znakům se říká specifikátory. Aby ta funkce format věděla, kam má to hrac, penize a score dosadit, musíme mu to dát nějak vědět. To je účel specifikátorů. Uvádíme je vždy v tom pořadí, v jakém po sobě jdou proměnné/řetězce, které dosazujeme. Máme následující specifikátory: %d nebo %i – celá čísla %s – řetězec %f – čísla s desetinnou čárkou %c – znak Nejsou všechny, ale jako základ nám tohle postačí. 4. Závěr A to by k řetězcům bylo všechno. Konečně již víme, co je nulový znak a k čemu slouží. Už víme, jak do řetězců ukládat běžný, ale také formátovaný text. Jediné, na co jsem ještě zapomněl – pomocí sizeof jsme zjistili velikost řetězce vysledek (počet buněk toho řetězce). Tento návod, stejně jako ten předchozí, je určen pro nováčky, pokročilejší věci byly buďto úplně vynechány, nebo jsou uvedeny ve spoilerech. Přesto, zdá-li se Vám, že jsem něco opomněl, někde jsem se spletl nebo se jen chcete vyjádřit, pište do tohoto tématu. Ověřený návod Tento návod prošel validací, a lze ho proto považovat za ověřený.
  14. Zdravim. Nedávno jsem si všimnul jednoho FS jmenem Audio Reklama a byl tam komentar ze by nekdo uz mohl vymyslet system aby se nemusel nahrávat zvuk a ten potom pouštět. Takže sem trochu projel jiné zdroje a zde máte řešení: stock TTS(playerid, text[], lang[]) // Text-To-Speak(ID hráče, text který chceme přehrát, jazyk) { new str[128]; // vytvoření nového stringu format(str, sizeof str, "translate.google.com/translate_tts?tl=%s&q=%s", lang, text); // format stringu PlayAudioStreamForPlayer(playerid, str); // prehrani zvukove stopy return 1; } Příklad použití: TTS(playerid, "Vítejte na nejkrutopřísnějším serveru na světě.", "cs"); Podporované jazyky: všechny které má google nadabované ale doporučuji používat: cs - český jazyk sk - slovenský jazyk en - anglický jazyk (tento jazyk má asi nejlepší dabing) A předem upozorňuji že je to vše pouze ženský hlas. Doufám že se to někomu bude hodit Návod označen jako platný Ten to návod byl označen jako platný.Návod může být kdykoli označen jako nevhodný či neplatný
  15. Původně jsem to v plánu neměl, ale rozhodl jsem se, že tu trochu objasním, jak funguje ternární operátor ? : Obtížnost: Jak to funguje Nejprve trochu nezbytné teorie, tento operátor se nazývá ternární, protože, jako jediný v pawn, pracuje se třemi operandy. první operand ? druhý operand : třetí operand _ Operandem nazýváme výraz, se kterým operátor pracuje. Tohle by myslím stačilo, teď se podívejme na to, jak funguje. logický výraz ? pravda : nepravda _ Operátor nejprve vyhodnotí logický výraz, pokud je tento výraz pravdivý (true), vrátí to, co je za otazníkem. Pokud je výraz nepravdivý (false), tak vrátí to, co je za dvojtečkou. Uvedu příklad: #define CERVENA 0xFF0000FF #define MODRA 0x0000FF00 new color; color = GetPlayerTeam(playerid) == 1 ? CERVENA : MODRA; Nejprve dojde k vyhodnocení logického výrazu, kterým je GetPlayerTeam(playerid) == 1. Pokud hráčův tým je skutečně tým s ID 1, tak se do proměnné color uloží hodnota za otazníkem, tedy CERVENA. Pokud ovšem má hráčův tým jiné ID, uloží se do proměnné hodnota za dvojtečkou, tedy MODRA. Využití v praxi Ne všechno se dá pochopit z teorie, proto je lepší to ukázat na několika příkladech z praxe. Hráčův tým Vezměme si ještě jednou příklad seshora a trochu jej upravme. Budeme chtít, aby se proměnné color nastavila CERVENA, pokud bude hráčův tým mít ID v rozmezí od 1 do 10. Pokud ne, nastaví se proměnné hodnota MODRA. Jak to lze řešit přes podmínky: if(GetPlayerTeam(playerid) >= 1 && GetPlayerTeam(playerid) <= 10) color = CERVENA; else color = MODRA; _ Jak my to vyřešíme šikovně přes ternární operátor: color = GetPlayerTeam(playerid) >= 1 && GetPlayerTeam(playerid) <= 10 ? CERVENA : MODRA; GetPlayerTeam(playerid) >= 1 && GetPlayerTeam(playerid) - logický výraz CERVENA - hodnota, která se uloží, když je logický výraz pravdivý/true MODRA - hodnota, která se uloží, když je logický výraz nepravdivý/false Pokud se v tom pomalu ztrácíte a přijde vám to nepřehledné, můžete si to ozávorkovat: color = (GetPlayerTeam(playerid) >= 1 && GetPlayerTeam(playerid) <= 10) ? (CERVENA) : (MODRA); _ Else if? Někteří z vás si možná řeknou "A co když potřebuji další podmínku, tedy else if?!" I tohle je samozřejmě pomocí ternárního operátoru možné, ale předem vás varuji, že se v tom možná začnete ztrácet. Zadání je následující: pokud má hráčův tým ID 1, nastaví se CERVENA, pokud má ID 2, nastaví se MODRA, pokud má jiné ID, nastaví se ZELENA. color = (GetPlayerTeam(playerid) == 1) ? (CERVENA) : ((GetPlayerTeam(playerid) == 2) ? (MODRA) : (ZELENA)); Za dvojtečku jsme přidali další ternární operátor. Pokud se ID rovná jedné, není problém, nastaví se CERVENA. Pokud se jedné nerovná, přeskočí za dvojtečku, zde narazí na další ternární operátor. Vyhodnotí další logický výraz. Pokud se ID rovná dvěma, nastaví se hodnota MODRA. Pokud to nebude ani jedna a ani dva, tak je to logicky jiné ID => nastaví se ZELENA. Šlo by to takhle větvit i dál, vždy by se za dvojtečku přidal další ternární operátor, ale při větším počtu bude lepší využít klasických podmínek, popř. switche. Příklad na závěr A dáme si ještě příklad na závěr. Skloňování v češtině programátorům leckdy dost komplikuje práci, výsledek výpisu hlášek se nám mnohdy nelíbí, například tady: new pocetHracu = 3,str[145]; format(str,sizeof str,"%i hráčů na serveru.",pocetHracu); SendClientMessageToAll(-1,str); _ Server nám vypíše tohle: 3 hráčů na serveru. _ Ale my chceme, aby vypisoval: 1 hráč na serveru. 2/3/4 hráči na serveru. 5/6/atd. hráčů na serveru. _ Zkrátka aby to vypsalo správný tvar slova hráč podle počtu. Lze to řešit přes podmínky nebo switch: switch(pocetHracu) { case 1: format(str,sizeof str,"%i hráč na serveru.",pocetHracu); case 2,3,4: format(str,sizeof str,"%i hráči na serveru.",pocetHracu); default: format(str,sizeof str,"%i hráčů na serveru.",pocetHracu); } _ Ale my si to zkrátíme na jeden řádek pomocí ternárního operátoru. format(str, sizeof str,"%i %s na serveru.",pocetHracu,(pocetHracu == 1) ? ("hráč") : ((pocetHracu < 5) ? ("hráči") : ("hráčů"))); Za specifikátor %s se dosadí jeden z tvarů slova hráč. Je to také krásná ukázka toho, že ternární operátor lze použít i v parametru funkce. Ještě jedno upozornění na závěr, když má tento operátor vracet řetězec, tak jej uzavřete do závorek vždy! Nevím, zda problém stále trvá, ale dříve byly problémy s tím, že když to nebylo v závorkách, pawno mohlo spadnout. Edit: Potvrzeno, problém stále trvá, pokud řetězec do závorek neuzavřete, kompilátor přestane pracovat. Tímto ukončuji návod, doufám, že si z něj někteří něco odnesou a že vám tento operátor třeba v něčem ulehčí nebo pomůže. Pokud jste narazili na nějakou chybu nebo se chcete na něco zeptat nebo se jen vyjádřit, pište. Ověřený návod Tento návod prošel validací, a lze ho proto považovat za ověřený.
  16. Zdravím, dostal jsem nápad jak by se dalo zpřehlednit vytváření návodů. Níže v tomto příspěvku by se měly zobrazovat témata s obory, které by potřebovaly nějaký návod. Tyto obory nejsou vymyšlené a je potřeba aby jste je vymysleli vy. Návody může psát kdokoliv, samozřejmě já se k nim přidám. Příklad: Něčemu nerozumíte zajdete si sem (na forum) a návod tu na to není. Můžete to vylepšit tím, že napíšete sem do topicu obor a téma pro který by jste potřebovaly návod. Já ho přidám to tabulky v prvním tomto příspěvku. Příklad 2: Jste zkušený v nějakém oboru a nudíte se občas nebo chcete někomu pomoci. Zajdete si na tento topic, najdete si obor který umíte a na uvedené téma napíšete návod. Dále napíšete sem, že je návod napsaný, abych mohl změnit status návodu za napsaný. Přidání má podmínku že uvedený návod, který by jste chtěli, neexistuje nebo je zastaralý, případně málo pochopitelný ) Veškeré připomínky nebo cokoliv jiného pište přímo sem. Nezapomeňte aspoň někdo pro začátek něco napsat aby to nebylo prázdné
  17. Pokud poskytujeme návštěvníkům prostředím MySQL chyb nebo PHP chyb informace, možná si myslíte, že jediná nevýhoda je nevzhledný web. Opak však pravdou. Pokud poskytnete návštěvníkovi, který je zkušený v hackování, výpis chyb, může si udělat hacker přehled o vašem webu a tak najít díru. Mimochodem, této chyby se dopouští i PHP-Fusion, který má na začátku souboru maincore.php řádek, který zařídí výpis všech chyb.: error_reporting(E_ALL); Možná se divíte, proč to PHP-Fusion tým nezabezpečil a nedal výpis chyb pouze pro administrátory. Odpověď je myslim si jednoduchá. Pomocí výpisu chyb neumí jen tak někdo hacknout web, ale jde to. Pokud si ovšem myslíte, že se někdo ve vašem okolí, kdo by to svedl, zabezpečení je jednoduché. Na konec souboru maincore.php stačí přidat řádek: if (!iADMIN) {error_reporting(0);} Poté stačí ještě každou funkci mysql_error() v echu obalit podmínkou: if (iADMIN) {echo mysql_error();} Upozornění: Z chyb v PHP dovedou web hacknout opravdoví profesionálové a neznamená, že pokud máte chybu na webu, hackne vám někdo web. Odhaduji, že tak 95% běžných chyb nic nenapoví ani profesionálovi, a proto je toto opatření opravdu už nad standart. Vytvořeno pro RS Php fusion ! Pokud vy jste chtěli další návod.. napište ohledně čeho.. kouknu na to a napíšu další tut !
  18. Sql injection je druh napadení webu, kdy může útočník přes nezabezpečené formuláře posílat příkazy databázi, kteár je poté vykoná.Webová aplikace neochráněná proti SQL Injection je před úžotčníkem rovnou odsouzená k "smrti. Protože útočník se pomocé této díry může nejen přihlásit jako jakýkoli uživatel , ale také může smazat celou databázi Takže to by bylo k úvodu na SQL injection.. tady vám dám jednoduchou ukázku SQL Injeciton útoku : Pokud webová aplikace nepodporuje při přihlašování hashování hesel nebo odstranění nebezpečných řetezců pomocí php funkce mysql_real_escape_string ... tudíž stačí zadat libovolné přihlašovací jméno a jako heslo vyplnit např.. x' or 'a' = 'a Nezabezpečený sql dotaz teda bude vypadat takto : ELECT * FROM fusion_users WHERE user_name='FlexFellovic' AND user_password='x' or 'a' = 'a'; Při tomto dotazu se PHP ptá MySQL databáze, jestli existuje uživatel s tímto jménem a heslem. útočník ovšem přidal podmínku že 'a' = 'a' , což je logicky vždy pravdivé a proto dotaz vrátí pravdivou hodnotu a přihlásí vás. Horší útok je ovšem, pokud přes nezabezpečený script útočník maže web. Pokud tedy například do políčka hesla přidá následující : '; DROP TABLE fusion_users; -- (místo fusion_users může být jakákoliv tabulka v mysql) , SQL dotaz se vykoná a výsledek je ten, že sice není útočník přihlášen jako administrátor, ale smaže tabulku obsahující informace o uživatelích. Ochrana proti tomuto útoku Nejjednodušší ochranou, jak jsem již psal, je použití funkce mysql_real_escape_string . Tato funkce je přizpůsobena tak, aby odstranila z dat veškerý nebezpečný obsah. Zabezpečený SQL dotaz v PHP (PHP-Fusionu) tedy poté vypadá například takto: $result = dbquery("INSERT INTO ".DB_BLAH." VALUES (NULL, ".mysql_real_escape_string($uzivatelsky_vstup).")"); Další dobrou ochranou je omezit práva pro MySQL uživatele na změny, které používáte. Pokud tedy na webu nikde nepoužíváte mazání tabulek, je dobré MySQL uživateli tuto funkci zakázat a tak zabezpečit web proti smazání DB při útoku. stavěno pro php fusion !
×
×
  • Create New...